

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FIRST SEMESTER EXAMINATION, 2017/2018 ACADEMIC SESSION

COURSE TITLE: ELECTROMAGNETIC FIELDS

COURSE CODE: EEE 313

EXAMINATION DATE: 20TH MARCH, 2018

COURSE LECTURER: DR R. O. Alli-Oke

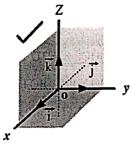
HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

1. ANSWER QUESTION 1 AND ANY OTHER FOUR QUESTIONS (TOTAL OF 5 QUESTIONS)

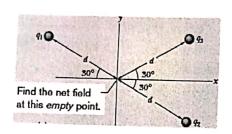
2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.


3. YOU ARE **NOT** ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.

4. SEPARATION VECTOR ξ IS **ALWAYS** r-r' i.e. FIELD POINT — SOURCE POINT.

5. COULOMB'S LAW: $\vec{\mathbf{E}} = \frac{1}{4\pi\epsilon_0} \frac{q}{\xi^2} \hat{\xi}$ VACUUM PERMITIVITY $\epsilon_0: 8.854 \times 10^{-12} \, \mathrm{Fm}^{-1}$

6. COLOUMB'S CONSTANT $k_e=\frac{1}{4\pi\epsilon_0}=8.988\times 10^9~\mathrm{Nm^2C^{-2}}$


7. USE THE FOLLOWING COORDINATE SYSTEM THROUGHOUT THE EXAM

Include appropriate units in your answers. The speed of light, permittivity and permeability in free space are given by $c=3\times 10^8$ m/s, $\varepsilon_0=8.854\times 10^{-12}$ Fm⁻¹ and $\mu_0=4\pi\times 10^{-7}$ N/A² respectively. All symbols should be taken as standard. The unit of \vec{B} is Nm⁻¹A⁻¹.

QUESTION #1

- a) An electron travels with a velocity of 4.9×10^6 m/s in the *i*-direction through a point in space where the magnetic field is 0.111T in the *j*-direction. Force of the electron at this point is $F = (9.5 \times 10^{-14}) i + (9.5 \times 10^{-14}) k$ N. Determine the electric field at this point. *Hint: Use Lorentz force law.* [4 marks]
- b) The charges below shows particles with charges $q_1 = +2Q$, $q_2 = +2Q$, and $q_3 = -4Q$ each at a distance d from the origin. What is the net electric field at the origin? *Hint: Separation vectors approach is a must. Note that the origin is already specified.*[3 marks]

-L di +L

Figure 1: Configuration of Discrete Charges

Figure 3: Current-Current Carrying Wire

c) The figure below (Fig. 2a) shows a non-conducting rod with uniformly distributed charge +Q. The rod forms a half-circle of radius R and produces an electric field of magnitude E_{arc} at its center of curvature P. If the arc is collapsed in a single point from P (see Fig 2b), by what factor is E_{arc} multiplied? You must use separation vectors approach. Hint: ratio of the electric field at P in Fig 2b to E_{arc} at P in Fig 2a.
[7 marks]

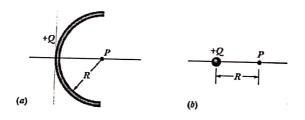


Figure 2: Configuration of Uniformly Distributed Charges

- d) A straight wire of length 2L carrying a steady-state current \vec{l} as shown in Figure 3. You must use separation vectors approach.
 - i) Determine the magnetic field \vec{B} at the mid-point P.

[4 marks]

ii) Derive the magnetic field \vec{B} at the mid-point P if the wire shown in Figure 3 is infinite.

[2 marks]

QUESTION #2

- a) Computation of electric field \vec{E} due to various charge configurations is one of the key goals of this course. In no more than 5 sentences, briefly explain 4 methods of computing \vec{E} . Give one reason why it is important to be able to compute \vec{E} . [3 marks]
- b) Consider a rod of length l has a uniform charge density of λ and a total charge Q. Calculate the electric field at a point P along the axis of the rod, a distance d from the left end.

 [7 marks]

QUESTION #3

- a) A rod of length l has a uniform charge density of λ and a total charge +Q. Set the reference point at ∞ .
 - i) Calculate the electric potential V at a point P as shown below in Fig. 4.

[4 marks]

ii) Using the grad operator ∇ , determine the electric field intensity \vec{E} .

[2 marks]

You must use separation vectors approach. Hint: The infinitesimal electric potential of the differential element dx shown in the

diagram is given by dV $=\frac{1}{4\pi\epsilon_0}\frac{dq}{\xi}$, where ξ is your separation vector.

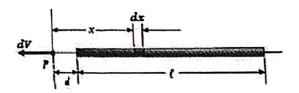


Figure 4: Finite Line of Charge

Figure 5: Thick Spherical Shell

- b) The electric potential at point P(-4,3,6) in free space is given by $V=2x^2y-5z$. Compute the numerical values for the :
 - i) electric potential V

[1 mark]

ii) electric field intensity \vec{E}

[2 marks]

iii) electric flux density \vec{D}

[1 mark]

QUESTION #4

- a) A sphere of radius R has a (volume) charge density proportional to the distance from the origin, $\rho = kr$, for some constant k. Find the electric field everywhere inside and outside the sphere. (Hint: There are two regions, r < R and $r \ge R$. The charge density is not uniform, you must integrate to get the enclosed charge) [4 marks]
- Consider an electric field in a region to be $\vec{E} = 2xzi + (x+2)j + y(z^2-3)k$. Find the total electric flux through a cube of edge-length 2m situated at the origin and placed in that region. [6 marks]

QUESTION #5

a) Show that $\oint \vec{E} \cdot d\vec{L} = 0$ for any electric field \vec{E} .

[4 marks]

b) Show that any electrostatic field \vec{E} is a conservative field. Hint: Show that work done in moving a charge Q from a distance $d\vec{L}$ in an electric field \vec{E} is independent of path taken. [6 marks]

QUESTION #6

- a) A non-uniform electric field is given by the expression $\vec{\bf E}=y\,i+2z\,j+4z\,k$. With the aid of a diagram, determine the electric flux through a rectangular surface in the zy plane extending from z=0 to z=1 and from y=0 to z=1. [5 marks]
- b) The figure below shows a thick spherical shell of charge of uniform volume charge density ρ . Plot \vec{E} due to the shell for distances r from the center of the shell ranging from 0cm to 30cm. Assume that $\rho = 1.0 \times 10^{-6} C/m^3$, a = 10cm, and b = 20cm. Hint: You are to derive \vec{E} for each region and then sketch \vec{E} from 0cm to 30cm. [5 marks]

QUESTION #7

- a) Assume the electric potential V is a function of x only. With the aid of a suitable diagram, show that the capacitor configuration with a potential difference V_0 could serve as boundary conditions to the Laplace's equation. [4 marks]
- b) Using the results obtained in (a), derive the capacitance of a capacitor of area S and distance d apart.

[6 marks]